Все о профилактике и борьбе с вредителями и паразитами

Как было открыто явление разлета галактик. Закон Хаббла Кажущаяся скорость удаления галактики от нас прямо пропорциональна расстоянию до нее. Обзор: космическое недоразумение

В настоящее время по данным астрономических наблюдений установлено, что Вселенная в больших масштабах однородна , т.е. все ее области размером от 300 млн. световых лет и больше выглядят одинаково. В меньших масштабах во Вселенной есть районы, где обнаруживаются скопления галактик и, наоборот, пустоты, где их мало.

Галактикой называется система звезд имеющих общее происхождение и связанных силами притяжения. Галактика, в которой находится наше Солнце – Млечный путь

Расстояния до небесных тел в астрономии определяются по-разному в зависимости от того близко или далеко от нашей планеты эти объекты находятся. В космическом пространстве принято использовать следующие единицы для измерения расстояний:

1 а.е.(астрономическая единица ) = (149597870 2) км;

1 пк (парсек ) = 206265 а.е. = 3,086·10 м;

1 с.г. (световой год ) = 0,307 пк = 9,5·10 м. Световой год – путь, который свет проходит за год.

В настоящей работе предлагается метод определения расстояний до далеких галактик по «красному смещению», т.е. по увеличению длин волн в спектре наблюдаемого удаленного источника излучения по сравнению с соответствующими длинами волн линий в эталонных спектрах.

Под источником света понимают излучение далеких галактик (наиболее ярких звезд или газопылевых туманностей в них). Под «красным смещением » - сдвиг спектральных линий в спектрах химических элементов, из которых состоят эти объекты, в длинноволновую (красную) сторону, по сравнению с длинами волн в спектрах эталонных элементов на Земле. «Красное смещение» обусловлено эффектом Доплера.

Эффект Доплера состоит в том, что излучение, посланное источником, удаляющимся от неподвижного приемника, будет приниматься им как более длинноволновое, по сравнению с излучением от такого же неподвижного источника. Если же источник приближается к приемнику, то длина волны регистрируемого сигнала, наоборот, будет уменьшаться.

В 1924 г советский физик Александр Фридман предсказал, что Вселенная расширяется. Имеющиеся в настоящее время данные показывают, что эволюция Вселенной началась с момента Большого Взрыва. Около 15 млрд. лет назад Вселенная представляла собой точку (ее называют точкой сингулярности ), к которой из-за сильнейшей гравитации в ней, очень высокой температуры и плотности неприменимы известные законы физики. В соответствии с принятой сейчас моделью Вселенная начала раздуваться из точки сингулярности с нарастающим ускорением.



В 1926 г. были получены экспериментальные доказательства расширения Вселенной. Американский астроном Э.Хаббл, при исследовании с помощью телескопа спектров далеких галактик, открыл красное смещение спектральных линий. Это означало, что галактики удаляются друг от друга, причем со скоростью, возрастающей с расстоянием. Хаббл построил линейную зависимость между расстоянием и скоростью, связанную с эффектом Доплера (закон Хаббла):

(1) , где

r – расстояние между галактиками;

v – скорость удаления галактик;

Н – постоянная Хаббла. Значение Н зависит от времени, прошедшего с начала расширения Вселенной до настоящего момента, и меняется в интервале от 50 до 100 км/с·Мпк. В астрофизике, как правило, используют Н= 75 км/с·Мпк. Точность определения постоянной Хаббла составляет

0,5 км/с·Мпк;

с – скорость света в вакууме;

Z – красное смещение длины волны, т.н. космологический фактор.

(2) , где

– длина волны принятого приемником излучения;

– длина волны излучения, испущенного объектом.

Таким образом, измеряя величину смещения линий, например, ионизированного водорода (Н+) в видимой части спектра, можно для наблюдаемой с Земли галактики, определить по формуле (2) ее красное смещение Z и, пользуясь законом Хаббла (1), вычислить расстояние до нее или скорость ее удаления:

Порядок выполнения работы

1. Вызвать программу «Определение расстояний до галактик» на рабочем столе компьютера. На экране монитора появится область Вселенной с девятью разными галактиками, наблюдаемыми с поверхности Земли. В верхней части экрана появляется спектр видимого света и маркер длины волны ионизированного водорода H+.

2. Установите курсор на галактике, указанной преподавателем и щелкните клавишей.

3. Запишите в таблицу измерений длину волны и λ излучаемую этой галактикой при ее удалении.

В относительной близости от нашей галактики Млечный Путь астрономы обнаружили несколько мелких галактик, заставивших их задуматься об известных им законах тяготения. Эти галактики образуют целое кольцо диаметром 10 млн световых лет и разлетаются от нас с такой высокой скоростью, что ученые не могут найти внятного объяснения столь быстрому разлету.

Находя аналогии между обнаруженной структурой и Большим взрывом, ученые уверены, что сформирована она была и получила скорость за счет сближения Млечного Пути и галактики Андромеды в далеком прошлом.

Проблема в одном: ученые не могут понять, почему при таком разлете эти мелкие галактики получили такую высокую скорость.

«Если теория гравитации Эйнштейна верна, наша галактика никогда не могла бы подойти столь близко к Андромеде, чтобы выбросить что-то с подобной скоростью», — пояснил Чжао Хуншэн из Сент-Эндрюсского университета (Шотландия), автор исследования, опубликованного в журнале MNRAS .

Чжао с коллегами изучают движения этого кольца мелких галактик, которые вместе с Млечным Путем и галактикой Андромеды входят в состав так называемой Местной группы, включающей минимум 54 галактики. Нашу спиральную галактику Млечный Путь и соседнюю галактику Андромеды разделяют 2,5 млн световых лет, однако в отличие от большинства известных галактик наша соседка не удаляется от нас, а летит навстречу со скоростью более 400 км/c.

Используя в расчетах Стандартную космологическую модель (так называемая ΛCDM-модель), ученые предполагают, что через 3,75 млрд лет две галактики должны столкнуться, а еще через несколько миллиардов лет это столкновение приведет к сильному разрушению обеих галактик и образованию новой. Но если эти галактики сближаются сейчас, то могли ли они сближаться в прошлом?

В 2013 году команда Чжао предположила , что 7-11 млрд лет назад Млечный Путь и Андромеда уже пролетали мимо друг друга на весьма близком расстоянии.

Это породило в них «цунамиподобные» волны, благодаря которым наружу были выброшены более мелкие галактики, которые и наблюдаются сегодня разлетающимися от нас.

Подобные сближения двух галактик известны астрономам (на иллюстрации к заметке — сближение галактик NGC 5426 and NGC 5427). Однако разлетаются они слишком быстро. «Высокие галактоцентрические радиальные скорости некоторых галактик Местной группы были вызваны действовавшими на них силами, которые наша модель не учитывает», — заключили они в статье. Более того, в общем прошлом Млечного Пути, Андромеды и этих разлетающихся галактик сомневаться не приходится хотя бы потому, что находятся они примерно в одной плоскости, аргументируют ученые.

«Кольцеобразное распределение — очень специфическое. Эти небольшие галактики выглядят как капли дождя, разлетающиеся от вращающегося зонтика, — пояснил соавтор исследования Индранил Баник.

— По моим оценкам, шанс, что случайно распределенные галактики выстроятся подобным образом, составляет 1/640.

Я проследил их происхождение до динамического события, которое произошло, когда Вселенная была в два раза моложе».

ΛCDM-модель — , учитывающая наличие во Вселенной обычной (барионной материи, темной энергии, описываемой в уравнениях Эйнштейна в виде постоянной Λ) и холодной темной материи.

Проблема описанного сценария разлета мелких галактик не только в гипотетическом нарушении модели ΛCDM. Расчеты показывают, что столь тесное сближение Млечного Пути и Андромеды в прошлом должно было привести к их слиянию, чего, как известно, не произошло.

«Столь высокая скорость (разлета галактик) требует в 60 раз большей массы звезд, чем мы наблюдаем сегодня в Млечном Пути и Андромеде. Однако трение, возникшее бы между массивным гало из темной материи в центре галактик и этими звездами, привело бы к их слиянию, а не к разлету на 2,5 млн световых лет, который произошел», — пояснил Баник.

«Наука развивается через вызовы, — считает Марсел Павловски, астрофизик из Калифорнийского университета в Ирвайне. — Это гигантское кольцо создает серьезный вызов стандартной парадигме».

Кажущаяся скорость удаления галактики от нас прямо пропорциональна расстоянию до нее.

Вернувшись с первой мировой войны, Эдвин Хаббл устроился на работу в высокогорную астрономическую обсерваторию Маунт-Вилсон в Южной Калифорнии, которая в те годы была лучшей в мире по оснащенности. Используя ее новейший телескоп-рефлектор с диаметром главного зеркала 2,5 м, он провел серию любопытных измерений, навсегда перевернувших наши представления о Вселенной.

Вообще-то, Хаббл намеревался исследовать одну застаревшую астрономическую проблему — природу туманностей. Эти загадочные объекты, начиная с XVIII века, волновали ученых таинственностью своего происхождения. К XX веку некоторые из этих туманностей разродились звездами и рассосались, однако большинство облаков так и остались туманными — и по своей природе, в частности. Тут ученые и задались вопросом: а где, собственно, эти туманные образования находятся — в нашей Галактике? или часть из них представляют собой иные «островки Вселенной», если выражаться изощренным языком той эпохи? До ввода в действие телескопа на горе Уилсон в 1917 году этот вопрос стоял чисто теоретически, поскольку для измерения расстояний до этих туманностей технических средств не имелось.

Начал свои исследования Хаббл с самой, пожалуй, популярной с незапамятных времен туманности Андромеды. К 1923 году ему удалось рассмотреть, что окраины этой туманности представляют собой скопления отдельных звезд, некоторые из которых принадлежат к классу переменных цефеид (согласно астрономической классификации). Наблюдая за переменной цефеидой на протяжении достаточно длительного времени, астрономы измеряют период изменения ее светимости, а затем по зависимости период—светимость определяют и количество испускаемого ею света.

Чтобы лучше понять, в чем заключается следующий шаг, приведем такую аналогию. Представьте, что вы стоите в беспросветно темной ночи, и тут вдалеке кто-то включает электрическую лампу. Поскольку ничего, кроме этой далекой лампочки, вы вокруг себя не видите, определить расстояние до нее вам практически невозможно. Может, она очень яркая и светится далеко, а может, тусклая и светится неподалеку. Как это определить? А теперь представьте, что вам каким-то образом удалось узнать мощность лампы — скажем, 60, 100 или 150 ватт. Задача сразу упрощается, поскольку по видимой светимости вы уже сможете примерно оценить геометрическое расстояние до нее. Так вот: измеряя период изменения светимости цефеиды, астроном находится примерно в той же ситуации, как и вы, рассчитывая расстояние до удаленной лампы, зная ее светосилу (мощность излучения).

Первое, что сделал Хаббл, — рассчитал расстояние до цефеид на окраинах туманности Андромеды, а значит, и до самой туманности: 900 000 световых лет (более точно рассчитанное на сегодняшний день расстояние до галактики Андромеды, как ее теперь называют, составляет 2,3 миллиона световых лет. — Прим. автора ) — то есть туманность находится далеко за пределами Млечного Пути — нашей галактики. Пронаблюдав эту и другие туманности, Хаббл пришел к базовому выводу о структуре Вселенной: она состоит из набора огромных звездных скоплений — галактик . Именно они и представляются нам в небе далекими туманными «облаками», поскольку отдельных звезд на столь огромном удалении мы рассмотреть попросту не можем. Одного этого открытия, вообще-то, хватило бы Хабблу для всемирного признания его заслуг перед наукой.

Ученый, однако, этим не ограничился и подметил еще один важный аспект в полученных данных, который астрономы наблюдали и прежде, но интерпретировать затруднялись. А именно: наблюдаемая длина спектральных световых волн, излучаемых атомами удаленных галактик, несколько ниже длины спектральных волн, излучаемых теми же атомами в условиях земных лабораторий. То есть в спектре излучения соседних галактик квант света, излучаемый атомом при скачке электрона с орбиты на орбиту, смещен по частоте в направлении красной части спектра по сравнению с аналогичным квантом, испущенным таким же атомом на Земле. Хаббл взял на себя смелость интерпретировать это наблюдение как проявление эффекта Доплера , а это означает, что все наблюдаемые соседние галактики удаляются от Земли, поскольку практически у всех галактических объектов за пределами Млечного Пути наблюдается именно красное спектральное смещение, пропорциональное скорости их удаления.

Самое главное, Хабблу удалось сопоставить результаты своих измерений расстояний до соседних галактик (по наблюдениям переменных цефеид) с измерениями скоростей их удаления (по красному смещению). И Хаббл выяснил, что чем дальше от нас находится галактика, тем с большей скоростью она удаляется. Это самое явление центростремительного «разбегания» видимой Вселенной с нарастающей скоростью по мере удаления от локальной точки наблюдения и получило название закона Хаббла. Математически он формулируется очень просто:

где v — скорость удаления галактики от нас, r — расстояние до нее, а H — так называемая постоянная Хаббла . Последняя определяется экспериментально, и на сегодняшний день оценивается как равная примерно 70 км/(с·Мпк) (километров в секунду на мегапарсек; 1 Мпк приблизительно равен 3,3 миллионам световых лет). А это означает, что галактика, удаленная от нас на расстояние 10 мегапарсек, убегает от нас со скоростью 700 км/с, галактика, удаленная на 100 Мпк, — со скоростью 7000 км/с, и т. д. И, хотя изначально Хаббл пришел к этому закону по результатом наблюдения всего нескольких ближайших к нам галактик, ни одна из множества открытых с тех пор новых, всё более удаленных от Млечного Пути галактик видимой Вселенной из-под действия этого закона не выпадает.

Итак, главное и — казалось бы — невероятное следствие закона Хаббла: Вселенная расширяется! Мне этот образ нагляднее всего представляется так: галактики — изюмины в быстро всходящем дрожжевом тесте. Представьте себя микроскопическим существом на одной из изюмин, тесто для которого представляется прозрачным: и что вы увидите? Поскольку тесто поднимается, все прочие изюмины от вас удаляются, причем чем дальше изюмина, тем быстрее она удаляется от вас (поскольку между вами и далекими изюминами больше расширяющегося теста, чем между вами и ближайшими изюминами). В то же время, вам будет представляться, что это именно вы находитесь в самом центре расширяющегося вселенского теста, и в этом нет ничего странного — если бы вы оказались на другой изюмине, вам всё представлялось бы в точности так же. Так и галактики разбегаются по одной простой причине: расширяется сама ткань мирового пространства. Все наблюдатели (и мы с вами не исключение) считают себя находящимися в центре Вселенной. Лучше всего это сформулировал мыслитель XV века Николай Кузанский: «Любая точка есть центр безграничной Вселенной».

Однако закон Хаббла подсказывает нам и еще кое-что о природе Вселенной — и это «кое-что» является вещью просто-таки экстраординарной. У Вселенной было начало во времени. И это весьма несложное умозаключение: достаточно взять и мысленно «прокрутить назад» условную кинокартину наблюдаемого нами расширения Вселенной — и мы дойдем до точки, когда всё вещество мироздания было сжато в плотный комок протоматерии, заключенный в совсем небольшом в сопоставлении с нынешними масштабами Вселенной объеме. Представление о Вселенной, родившейся из сверхплотного сгустка сверхгорячего вещества и с тех пор расширяющейся и остывающей, получило название теории Большого взрыва , и более удачной космологической модели происхождения и эволюции Вселенной на сегодня не имеется. Закон Хаббла, кстати, помогает также оценить возраст Вселенной (конечно, весьма упрощенно и приблизительно). Предположим, что все галактики с самого начала удалялись от нас с той же скоростью v , которую мы наблюдаем сегодня. Пусть t — время, прошедшее с начала их разлета. Это и будет возраст Вселенной, и определяется он соотношениями:

v x t = r, или t = r /V

Но ведь из закона Хаббла следует, что

r /v = 1/H

где Н — постоянная Хаббла. Значит, измерив скорости удаления внешних галактик и экспериментально определив Н , мы тем самым получаем и оценку времени, в течение которого галактики разбегаются. Это и есть предполагаемое время существования Вселенной. Постарайтесь запомнить: по самым последним оценкам, возраст нашей Вселенной составляет около 15 миллиардов лет, плюс-минус несколько миллиардов лет. (Для сравнения: возраст Земли оценивается в 4,5 миллиардов лет, а жизнь на ней зародилась около 4 миллиардов лет назад.)

См. также:

Edwin Powell Hubble, 1889-1953

Американский астроном. Родился в г. Маршфилд (штат Миссури, США), вырос в Уитоне (штат Иллинойс) — тогда это был не университетский, а промышленный пригород Чикаго. Окончил с отличием Чикагский университет (где отличился еще и спортивными достижениями). Еще учась в колледже, подрабатывал ассистентом в лаборатории нобелевского лауреата Роберта Милликена (см. Опыт Милликена), а в летние каникулы — геодезистом на железнодорожном строительстве. Впоследствии Хаббл любил вспоминать, как вместе еще с одним рабочим они отстали от последнего поезда, увозившего их геодезическую бригаду назад, к благам цивилизации. Три дня они проблуждали в лесах, прежде чем добрались до населенной местности. Никакой провизии у них с собой не было, но, по словам самого Хаббла, «Можно было, конечно, убить ежика или птичку, но зачем? Главное, что воды вокруг хватало».

Получив в 1910 году диплом бакалавра, Хаббл отправился в Оксфорд благодаря полученной стипендии Роудса. Там он начал было изучать римское и британское право, но, по его собственм словам, «променял юриспруденцию на астрономию» и вернулся в Чикаго, где и занялся подготовкой к защите своей дипломной работы. Большинство наблюдений ученый проводил на базе обсерватории Йеркс, расположенной к северу от Чикаго. Там его заметил Джордж Эллери Хейл (George Ellery Hale, 1868-1938) и в 1917 году пригласил молодого человека в новую обсерваторию Маунт-Вилсон.

Тут, однако, вмешались исторические события. США вступили в первую мировую войну, и Хаббл за одну ночь довел до ума свою диссертацию на степень Ph. D., на следующее утро защитил ее — и тут же ушел добровольцем в армию. Его научный руководитель Хейл получил от Хаббла телеграмму следующего содержания: «Сожалею о вынужденном отказе от приглашения отметить защиту. Ушел на войну». Во Францию добровольческая часть прибыла в самом конце войны и даже не приняла участия в боевых действиях, однако осколочное ранение от шального снаряда Хаббл получить успел. Демобилизовавшись летом 1919 года, ученый немедленно вернулся в калифорнийскую обсерваторию Маунт-Вилсон, где вскоре и обнаружил, что Вселенная состоит из разлетающихся галактик, что и получило название закона Хаббла.

В 1930-е годы Хаббл продолжил активное изучение мира за пределами Млечного пути, за что вскоре и снискал признание не только в научных кругах, но и среди широких масс. Слава ему пришлась по вкусу, и на фотографиях тех лет ученого можно часто увидеть позирующим в компании знаменитых кинозвезд той эпохи.

Научно-популярная книга Хаббла «Царство туманностей» (The Realm of Nebulae), увидевшая свет в 1936 году, еще прибавила ученому популярности. Справедливости ради нельзя не отметить, что в годы второй мировой войны ученый оставил свои астрофизические изыскания и честно занимался прикладной баллистикой в должности главного исполнительного директора испытательного полигона со сверхзвуковой аэродинамической трубой в Абердине (штат Мэриленд), после чего вернулся к астрофизике и до конца своих дней занимал пост председателя объединенного ученого совета обсерватории Маунт-Вилсон и Паломарской обсерватории. В частности, ему принадлежит движущая идея и техническая разработка базовой конструкции знаменитого двухсотдюймового (пятиметрового) хейловского телескопа, введенного в строй в 1949 году на базе Паломарской обсерватории. Этот телескоп по сей день остается вершиной воплощенной в материале астрометрии. И, наверное, справедливо, что именно Хаббл успел — первым из современных астрофизиков — заглянуть в глубины Вселенной через окуляр этого чудесного инструмента.

Если же отвлечься от астрономии, то Эдвин Хаббл вообще был человеком уникально широких интересов. Так, в 1938 году его избрали в состав совета попечителей Южно-Калифорнийской библиотеки Хантингтона и Художественной галереи при ней (Лос-Анджелес, США). Ученый подарил этой библиотеке свою уникальную коллекцию старинных книг по истории науки. Любимым же видом отдыха Хаббла была рыбная ловля на спиннинг — он и в этом добился вершин, и его рекордные уловы в горных потоках Скалистых гор (США) и на реке Тест (Англия) до сих пор считаются непревзойденными... Эдвин Хаббл скоропостижно скончался 28 сентября 1953 года в результате кровоизлияния в мозг.

Тем временем, наша местная группа мчится по направлению к центру скопления Девы (Virgo Cluster) на скорости 150 миллионов километров в час.

Млечный Путь и соседка Андромеда, наряду с 30 более мелкими галактиками, а также тысячи галактик Девы, все это притягивается Великим аттрактором. Учитывая скорости при таких масштабах, невидимая масса, занимающая пустоты между галактиками и кластерами галактик, должна по меньшей мере в десять раз превышать видимую материю.

Даже при всем этом, добавив этот невидимый материал к видимому материалу и получив среднюю массу вселенной, мы получим всего 10-30 % от критической плотности, которая необходима, чтобы «закрыть» вселенную. Этот феномен позволяет предположить, что вселенная «открыта». Космологи продолжают спорить на эту тему точно так же, как пытаются , или «темной материи».

Считается, что определяет структуру Вселенной на огромных масштабах. Темная материя гравитационно взаимодействует с нормальным веществом и именно это позволяет астрономам наблюдать формирование длинных тонких стен супергалактических кластеров.

Недавние измерения (с помощью телескопов и космических зондов) распределения массы в M31, крупнейшей галактике в окрестностях Млечного Пути, и других галактиках привели к признанию того факта, что галактики наполнены темной материей, и показали, что таинственная сила - - заполняет вакуум пустого пространства, ускоряя расширение Вселенной.

Теперь астрономы понимают, что окончательная судьба вселенной неразрывно связана с наличием темной энергии и темной материи. Современная стандартная модель для космологии предполагает, что во вселенной 70 % темной энергии, 25 % темной материи и всего 5 % нормальной материи.

Мы не знаем, что такое темная энергия и почему она существует. С другой стороны, теория частиц подсказывает, что на микроскопическом уровне даже идеальный вакуум пузырится квантовыми частицами, которые являются естественным источником темной энергии. Но элементарные расчеты показывают, что темная энергия, которая вырабатывается из вакуума, имеет значение в 10 120 раз больше, чем то, которое мы наблюдаем. Некоторые неизвестные физические процессы должны устранять большинство, но не всю, энергию вакуума, оставляя достаточно для ускорения расширения вселенной.

Новой теории элементарных частиц придется объяснить этот физический процесс. Новые теории «темных аттракторов» прикрываются так называемым принципом Коперника, который говорит о том, что нет ничего удивительного в том, что мы, наблюдатели, предполагаем, что вселенная неоднородна. Такие альтернативные теории объясняют наблюдаемое ускоренное расширение Вселенной без привлечения темной энергии, а вместо этого предполагают, что мы недалеко от центра пустоты, за которой более плотный «темный» аттрактор тянет нас к себе.

В статье, опубликованной в Physical Review Letters , Пенгжи Чжан из Шанхайской астрономической обсерватории и Альберт Стеббинс на выставке лаборатории Ферми показали, что популярная модель пустоты и многие другие вполне могут заменить темную энергию, не вступая в противоречия с наблюдениями телескопов.

Опросы показывают, что вселенная однородна, по меньшей мере, на масштабах до гигапарсека. Чжан и Стеббинс утверждают, что если большие масштабы неоднородности существуют, они должны быть обнаружены как температурный сдвиг в космическом микроволновом фоне реликтовых фотонов, образовавшихся спустя 400 000 лет после Большого Взрыва. Это происходит из-за электронно-фотонного рассеяния (обратного Комптоновскому).

Сосредоточив внимание на модели пустоты «пузырь Хаббла», ученые показали, что в таком сценарии некоторые области вселенной будут расширяться быстрее, чем другие, в результате чего температурный сдвиг будет больше, чем ожидается. Но телескопы, изучающие реликтовое излучение, не видят такого большого сдвига.

Что ж, как говорил Карл Саган, «экстраординарные заявления требуют экстраординарных доказательств».

Рассмотрим две галактики, находящиеся на расстоянии L друг от друга и удаляющиеся друг от друга со скоростью V . Чему равна величина красного смещения в спектре первой галактики, измеренная наблюдателем, находящимся на второй?

Казалось бы, ответ очевиден. Величина красного смещения z равна:

Однако такую величину красного смещения следовало бы ожидать в стационарной Вселенной. Но ведь наша Вселенная расширяется! Может ли сам факт расширения Вселенной влиять на величину красного смещения?

Изменим условие задачи. Теперь предположим, что галактики находятся на фиксированном расстоянии L друг от друга (например, они медленно вращаются вокруг общего центра масс). Обнаружит ли наблюдатель, находящийся на одной галактике, красное смещение в спектре другой, из-за того, что Вселенная расширяется?

Когда Вселенная расширяется, она преодолевает гравитационное притяжение между своими частями. Поэтому по мере расширения Вселенной скорость её расширения уменьшается. Фотон, двигаясь от одной галактики к другой, так же, как и любой объект внутри Вселенной, гравитационно взаимодействует с расширяющейся материей и, тем самым, «тормозит» расширение Вселенной. Поэтому энергия фотона, движущегося в расширяющейся Вселенной, должна уменьшаться. Сделаем количественные оценки.

Когда фотон вылетел из одной галактики, гравитационный потенциал внутри Вселенной, создаваемый всей материей Вселенной, был равен Ф 1 . Когда фотон прилетел во вторую галактику, гравитационный потенциал внутри Вселенной увеличился из-за расширения Вселенной и стал равен Ф 2 > Ф 1 (при этом |Ф 2 | < | Ф 1 |, так как гравитационный потенциал меньше нуля). То есть фотон, вылетев из области с более низким гравитационным потенциалом, прилетел в область с более высоким гравитационным потенциалом. В результате этого энергия фотона уменьшилась.

Таким образом, величина красного смещения в спектре излучения галактики, которая удаляется от нас, будет складываться из двух частей. Первая часть, вызванная непосредственно скоростью удаления галактик, – это так называемый доплеровский эффект. Его величина равна:

Вторая часть вызвана тем, что Вселенная расширяется, и поэтому гравитационный потенциал внутри неё возрастает. Это так называемое красное гравитационное смещение. Его величина равна:

(8.9)

Здесь Ф 1 – гравитационный потенциал Вселенной в месте вылета фотона, в момент его вылета; Ф 2 – гравитационный потенциал Вселенной в месте регистрации фотона, в момент его регистрации.

В результате величина красного смещения в спектре излучения удаляющейся от нас галактики будет равна:

(8.10)

И мы приходим к очень важному выводу. Только часть красного космологического смещения, наблюдаемого в спектрах излучения далёких галактик, вызвана непосредственно удалением этих галактик от нас. Другая же часть красного смещения вызвана увеличением гравитационного потенциала Вселенной. Поэтому скорости, с которыми галактики удаляются от нас, меньше , чем предполагается в современной космологии, а возраст Вселенной, соответственно, больше .

Расчёты, выполненные в , показывают, что если плотность Вселенной близка к критической (такой вывод делается на основе изучения крупномасштабного распределения галактик), то:

То есть только 2/3 величины красного космологического смещения z 0 в спектрах далёких галактик (8.10) вызвано скоростью удаления галактик. Соответственно, постоянная Хаббла в 1,5 раза меньше, чем предполагается в современной космологии, а возраст Вселенной, наоборот, в 1,5 раза больше.

А как решается вопрос о происхождении красного космологического смещения в общей теории относительности? Рассмотрим две галактики, которые участвуют в космологическом расширении Вселенной и пекулярные скорости которых настолько малы, что ими можно пренебречь. Пусть расстояние между галактиками в момент вылета фотона из первой галактики равно L . Когда фотон прилетит во вторую галактику, расстояние между галактиками увеличится и будет равно L + L D. В общей теории относительности гравитационное взаимодействие полностью сводится к геометрии. Согласно этой теории наиболее важной величиной, характеризующей расширяющуюся Вселенную, является так называемый масштабный фактор. Если пекулярными скоростями двух удалённых друг от друга галактик можно пренебречь, то масштабный фактор будет изменяться пропорционально изменению расстояния между этими галактиками.

Согласно общей теории относительности длина волны фотона l, движущегося в расширяющейся Вселенной, изменяется пропорционально изменению масштабного фактора, и красное смещение, соответственно, равно:

(8.12)

Если V – скорость удаления галактик друг от друга, t – время полёта фотона, то:

В результате получаем:

Таким образом, согласно общей теории относительности красное космологическое смещение не зависит ни от плотности Вселенной, ни от скорости, с которой изменяется гравитационный потенциал Вселенной, а зависит только от относительной скорости разбегания галактик. И если бы, например, наша Вселенная расширялась с такой же скоростью, что и сейчас, но имела бы при этом в несколько раз меньшую плотность, то согласно общей теории относительности величина красного космологического смещения в спектрах излучения галактик была бы той же самой . Получается, что существование огромных масс внутри Вселенной, сдерживающих расширение Вселенной, никак не влияет на энергию движущихся фотонов! Это представляется маловероятным.

Возможно, именно поэтому возникли серьёзные проблемы при попытке объяснить в рамках общей теории относительности зависимость красных смещений в спектрах очень далёких сверхновых звёзд от величины расстояния до них. И чтобы «спасти» общую теорию относительности, в конце двадцатого века космологи выдвинули предположение, что наша Вселенная расширяется не с замедлением, а, наоборот, с ускорением, вопреки закону Всемирного тяготения (эта тема обсуждается в ).

Здесь мы не будем обсуждать гипотезу ускоренного расширения Вселенной (хотя, по моему глубокому убеждению, не только общая теория относительности, но и никакая другая теория не стоит того, чтобы её спасать при помощи подобных гипотез), а вместо этого постараемся перевести данную проблему из области теоретической физики в область эксперимента. Действительно, зачем вести теоретические споры о происхождении красного космологического смещения, если можно получить ответ на этот вопрос в физической лаборатории?

Сформулируем этот важный вопрос ещё раз. Существует ли красное космологическое смещение, вызванное не доплеровским эффектом удаления галактик, а тем фактом, что при движении фотона возрастает гравитационный потенциал Вселенной?

Чтобы ответить на этот вопрос, достаточно провести следующий эксперимент (см. рис. 33).

Луч лазера разделяется на два луча так, что один луч сразу попадает на детектор, а второй луч сначала движется некоторое время между двумя параллельными зеркалами и только после этого попадает на детектор. Таким образом, второй луч попадает на детектор с временной задержкой t(несколько минут). И на детекторе сравниваются длины волн двух лучей, испущенных в моменты времени t -tи t . Изменение длины волны второго луча относительно первого следует ожидать из-за возрастания гравитационного потенциала Вселенной, вызванного её расширением.

Этот эксперимент подробно обсуждается в , поэтому сейчас мы рассмотрим только основные выводы, которые можно будет сделать после его проведения.


Рис. 33 . Принципиальная схема эксперимента по измерению красного космологического смещения, вызванного не доплеровским эффектом, а изменением гравитационного потенциала внутри Вселенной.

Луч лазера направляется на полупрозрачное зеркало. При этом одна часть луча проходит сквозь зеркало и по кратчайшему пути попадает на детектор. А вторая часть луча, отразившись от зеркала и пройдя через систему зеркал 1, 2, 3, попадает на детектор с некоторой задержкой по времени. И в результате на детекторе сравниваются длины волн двух лучей, испущенных в разные моменты времени.

Во-первых, мы сможем узнать, существует или нет красное космологическое смещение, вызванное не скоростью удаления источника, а самим фактом расширения Вселенной, то есть возрастанием гравитационного потенциала внутри Вселенной.

Во-вторых, если такое смещение будет обнаружено (а для этого есть все основания), то, тем самым, мы, посредством лабораторного эксперимента, докажем сам факт расширения Вселенной . И более того, сможем измерить скорость, с которой возрастает гравитационный потенциал, создаваемый всей материей во Вселенной.

В-третьих, отняв от величины красного смещения в спектрах далёких галактик ту часть, которая вызвана не скоростью их удаления, а изменением гравитационного потенциала, мы узнаем истинную скорость удаления галактик, и таким образом сможем исправить существующую оценку возраста Вселенной.

Похожие публикации