Все о профилактике и борьбе с вредителями и паразитами

Как далеко край Вселенной отстоит от самой далёкой галактики? Обнаружена самая дальняя галактика вселенной Самые старые объекты в галактике

Астрономы нашли самый удаленный из известных объектов во Вселенной. Возраст галактики UDFy-38135539 составляет 13,1 миллиарда лет - то есть она образовалась спустя всего 600 миллионов лет после Большого взрыва. Исследователи описали обнаруженную ими галактику в статье в журнале Nature . Коротко о работе пишет New Scientist.

Впервые снимок галактики получил телескоп "Хаббл" в сентябре 2009 года. Излучение очень бледного объекта было сильно сдвинуто в красную область спектра - такое смещение характерно для древних объектов. Чем смещение больше, тем старше объект - а, значит, тем большее расстояние прошел свет от объекта до наблюдателя. Однако возможно и альтернативное объяснение - излучение с похожими спектральными характеристиками могут испускать объекты наподобие коричневых карликов, расположенные неподалеку от Солнечной системы.

Для того чтобы сделать выбор между этими двумя возможностями, астрономы провели непрерывные 16-часовые наблюдения найденного ими объекта с использованием 8,2-метрового телескопа Европейской южной обсерватории (ESO) в Чили. Анализ собранных данных о спектре объекта позволил ученым установить, что это галактика, и она удалена от Земли на 13,1 миллиарда световых лет (именно столько лет потребовалось свету, чтобы добраться до оптики телескопа). Считается, что возраст Вселенной составляет около 13,7 миллиарда лет.

Согласно наиболее общепринятым гипотезам эволюции Вселенной, через несколько сотен тысяч лет после Большого взрыва протоны и электроны начали объединяться друг с другом и формировать водород. Еще через 150 миллионов лет начали образовываться первые галактики, и пространство между ними было заполнено водородом, поглощавшим свет звезд. Однако постепенно под воздействием излучения от светил водород расщеплялся на протоны и электроны (этот процесс называют реионизацией), и Вселенная постепенно становилась прозрачной. Считалось, что межгалактическое пространство более или менее расчистилось спустя приблизительно 800 миллионов лет после Большого взрыва.

Тот факт, что астрономы смогли увидеть галактику UDFy-38135539, означает, что реионизация шла полным ходом уже тогда, когда Вселенной было только 600 миллионов лет (в противном случае наблюдать UDFy-38135539 было бы невозможно). Расчеты авторов исследования показывают, что излучения только этой галактики было недостаточно для расчистки окружавшего пространства, поэтому астрономы предполагают, что UDFy-38135539 "помогали" соседние звездные скопления.

До сих пор самым удаленным из найденных во Вселенной объектов гамма-всплеск GRB 090423, который произошел около 13,1 миллиарда лет назад (по уточненным оценкам - около 13 миллиардов лет назад).

Используя данные с орбитального телескопа Hubble, астрономы обнаружили самый дальний объект нашей Вселенной - галактику, расположенную в 13,2 млрд световых лет от Земли.

"Мы вернулись назад во времени, подошли очень близко к первым галактикам, которые, как мы полагаем, сформировались примерно через 200 - 300 миллионов лет после Большого взрыва", - цитирует слова одного из авторов работы Гарта Иллингворта "РИА Новости" . Уникальным объектом оказалась UDFj-39546284 - рекордно далекая галактика, которая отличалась относительно низкой скоростью звездообразования. Сопоставление данных о ней с информацией о других относительно более близких и более "старых" галактиках, показало, что скорость звездообразования в галактиках всего лишь за 170 млн лет выросла в десять раз.

"Это потрясающий рост за период, который составляет лишь 1% от нынешнего возраста Вселенной", - говорит Иллингворт. По мнению ученых, эти данные соответствуют иерархической картине формирования галактик, согласно которой галактики растут и сливаются под действием гравитации темной материи. Найденная учеными галактика значительно меньше и легче, чем современные спиральные галактики. Так, наша Галактика примерно в 100 раз более массивна.

Поиски все более и более далеких космических объектов помогают астрономам заглянуть в далекое прошлое Вселенной. Из-за того, что скорость света конечна, мы видим далекие галактики такими, какими они были в далеком прошлом. Галактику UDFj-39546284 астрономы наблюдают такой, какой она была, когда возраст Вселенной составлял всего 480 млн лет.

Главным показателем расстояния до далеких галактик служит красное смещение - сдвиг линий в спектре из-за эффекта Доплера. Чем больше красное смещение, тем дальше космический объект, поскольку с расстоянием, согласно закону Хаббла, скорость убегания галактик растет. По версии авторов открытия самой далекой галактики, ее красное смещение может составлять 10,3. Однако эти данные не окончательны, так как на современном этапе развития астрономии точное измерение красного смещения - чрезвычайно трудная задача. "Пока красное смещение не измерено с помощью спектроскопических методов, она остается всего лишь кандидатом, хотя и хорошим кандидатом", - прокомментировал открытие астрофизик Сергей Попов из Астрономического института имени Штернберга.

Если показатели красного смещения открытой галактики действительно окажутся в районе 9 - 10, то объект будет признан самым древним во Вселенной. Пока же это звание удерживала галактика UDFy-38135539, расположенная в 13 млрд световых лет от Земли. Она была обнаружена в октябре 2010 г. астрономами из Европейской южной обсерватории (ESO). Красное смещение этой галактики оказалось равным 8,5549, и мы видим ее такой, какой она была примерно 600 млн лет назад.

Изучение самых далёких галактик может показать нам объекты, расположенные в миллиардах световых лет от нас, но даже с идеальной технологией пространственный промежуток между самой далёкой галактикой и Большим взрывом будет оставаться огромным.

Вглядываясь во Вселенную, мы видим свет везде, на всех расстояниях, на которые только способны заглянуть наши телескопы. Но в какой-то момент мы наткнёмся на ограничения. Одно из них накладывается космической структурой, формирующейся во Вселенной: мы можем видеть только звёзды, галактики и прочее, только если они излучают свет. Без этого наши телескопы ничего не способны разглядеть. Другое ограничение, при использовании видов астрономии, не ограничивающихся светом - это ограничение того, какая часть Вселенной доступна для нас с момента Большого взрыва. Две эти величины могут не быть связанными друг с другом, и именно по этой теме нам задаёт вопрос наш читатель:

Почему красное смещение реликтового излучения находится в пределах 1000, хотя самое большое красное смещение любой галактики из тех, что мы видели, равно 11?
Сначала мы должны разобраться с тем, что происходит в нашей Вселенной с момента Большого взрыва.



Наблюдаемая Вселенная может простираться на 46 млрд световых лет во всех направлениях с нашей точки зрения, но наверняка есть и другие её участки, ненаблюдаемые нами, и, возможно, они даже бесконечны.

Весь набор того, что мы знаем, видим, наблюдаем и с чем взаимодействуем, называют «наблюдаемой Вселенной». За пределами него, скорее всего, находится ещё больше участков Вселенной, и со временем у нас будет возможность видеть всё больше и больше этих участков, когда свет от удалённых объектов, наконец, достигнет нас после космического путешествия в миллиарды лет. Мы можем видеть то, что видим (и больше, а не меньше), благодаря комбинации из трёх факторов:


  • Со времени Большого взрыва прошло конечное количество времени, 13,8 млрд лет.

  • Скорость света, максимальная скорость для любого сигнала или частицы, передвигающегося по Вселенной, конечна и постоянна.

  • Сама ткань пространства растягивается и расширяется с момента Большого взрыва.


Временная шкала истории наблюдаемой Вселенной

То, что нам видно сегодня, является результатом работы трёх этих факторов, совместно с изначальным распределением материи и энергии, работающих по законам физики на протяжении всей истории Вселенной. Если мы хотим узнать, какой была Вселенная в любой ранний момент времени, нам надо всего лишь пронаблюдать, какой она стала сегодня, измерить все связанные с этим параметры, и подсчитать, какой она была в прошлом. Для этого нам потребуется много наблюдений и измерений, но уравнения Эйнштейна, пусть и такие трудные, по крайней мере, недвусмысленны. Выводимые результаты выливаются в два уравнения, известные, как уравнения Фридмана , и с задачей их решения каждый студент, изучающий космологию, сталкивается напрямую. Но мы, честно говоря, сумели провести несколько удивительных измерений параметров Вселенной.


Глядя в направлении северного полюса Галактики Млечный Путь, мы можем заглядывать в глубины космоса. На этом изображении размечены сотни тысяч галактик, и каждый его пиксель - это отдельная галактика.

Мы знаем, с какой скоростью она расширяется сегодня. Мы знаем, какова плотность материи в любом направлении, в котором мы смотрим. Мы знаем, сколько структур формируется на всех масштабах, от шаровых скоплений до карликовых галактик, от крупных галактик до их групп, скоплений и крупномасштабных нитевидных структур. Мы знаем, сколько во Вселенной нормальной материи, тёмной материи, тёмной энергии, а также более мелких составляющих, таких, как нейтрино, излучение, и даже чёрные дыры. И только исходя из этой информации, экстраполируя назад во времени, мы можем вычислить как размер Вселенной, так и скорость её расширения в любой момент её космической истории.


Логарифмический график зависимости размера наблюдаемой Вселенной от возраста

Сегодня наша обозримая Вселенная простирается на примерно 46,1 млрд световых лет во всех направлениях с нашей точки зрения. На таком расстоянии находится точка старта воображаемой частицы, которая отправилась в путь в момент Большого взрыва, и, путешествуя со скоростью света, прибыла бы к нам сегодня, спустя 13,8 млрд лет. В принципе, на этом расстоянии были порождены все гравитационные волны, оставшиеся от космической инфляции - состояния, предшествовавшего Большому взрыву, настроившего Вселенную и обеспечившего все начальные условия.


Гравитационные волны, созданные космической инфляцией - это самый старый сигнал из всех, которые человечество в принципе могло бы засечь. Они родились в конце космической инфляции и в самом начале горячего Большого взрыва.

Но во Вселенной остались и другие сигналы. Когда ей было 380 000 лет, остаточное излучение от Большого взрыва прекратило рассеиваться со свободных заряженных частиц, поскольку те образовали нейтральные атомы. И эти фотоны, после образования атомов, продолжают испытывать красное смещение вместе с расширением Вселенной, и их можно увидеть сегодня при помощи микроволновой или радиоантенны/телескопа. Но из-за большой скорости расширения Вселенной на ранних этапах, «поверхность», которая «светится» для нас этим остаточным светом - космический микроволновой фон - находится всего в 45,2 млрд световых лет от нас. Расстояние от начала Вселенной до того места, где Вселенная находилась через 380 000 лет, получается равным 900 млн световых лет!


Холодные флуктуации (синие) в реликтовом излучении не холоднее сами по себе, а просто представляют участки с усиленным гравитационным притяжением из-за увеличенной плотности материи. Горячие (красные) участки горячее, потому что излучение в этих регионах живёт в менее глубоком гравитационном колодце. Со временем более плотные регионы с большей вероятностью вырастут в звёзды, галактики и скопления, а менее плотные сделают это с меньшей вероятностью.

Пройдёт ещё немало времени, прежде чем мы найдём самую удалённую из всех открытых нами галактик Вселенной. Хотя симуляции и расчёты показывают, что самые первые звёзды могли сформироваться через 50-100 млн лет с начала Вселенной, а первые галактики - через 200 млн лет, так далеко назад мы ещё не заглядывали (хотя, есть надежда, что после запуска в следующем году космического телескопа им. Джеймса Уэбба мы сможем это сделать!). На сегодня космическим рекордом владеет галактика, показанная ниже, существовавшая, когда Вселенной было 400 млн лет - это всего 3% от текущего возраста. Однако эта галактика, GN-z11, расположена всего в 32 млрд световых лет от нас: это порядка 14 млрд световых лет от «края» наблюдаемой Вселенной.


Самая удалённая из всех обнаруженных галактик: GN-z11, фото с наблюдения GOODS-N, проведённого телескопом Хаббл.

Причина этого состоит в том, что вначале скорость расширения со временем очень быстро падала. Ко времени, когда галактика Gz-11 существовала в наблюдаемом нами виде, Вселенная расширялась в 20 раз быстрее, чем сегодня. Когда было испущено реликтовое излучение, Вселенная расширялась в 20 000 раз быстрее, чем сегодня. На момент Большого взрыва, насколько мы знаем, Вселенная расширялась в 10 36 раз быстрее, или в 1 000 000 000 000 000 000 000 000 000 000 000 000 раз быстрее, чем сегодня. Со временем скорость расширения Вселенной сильно уменьшилась.

И для нас это очень хорошо! Баланс между первичной скоростью расширения и общим количеством энергии во Вселенной во всех её формах идеально соблюдается, вплоть до погрешности наших наблюдений. Если бы во Вселенной было хоть немного больше материи или излучения на ранних этапах, она бы схлопнулась обратно миллиарды лет назад, и нас бы не было. Если бы во Вселенной было слишком мало материи или излучения на ранних этапах, она бы расширилась так быстро, что частицы не смогли бы встретиться друг с другом, чтобы даже сформировать атомы, не говоря уже о более сложных структурах типа галактик, звёзд, планет и людей. Космическая история, которую рассказывает нам Вселенная, это история чрезвычайной сбалансированности, благодаря которой мы и существуем.


Замысловатый баланс между скоростью расширения и общей плотностью Вселенной настолько хрупок, что даже отклонение в 0,00000000001% в любую сторону сделало бы Вселенную совершенно необитаемой для любой жизни, звёзд или даже планет в любой момент времени.

Если верны лучшие из наших современных теорий, то первые настоящие галактики должны были сформироваться в возрасте от 120 до 210 млн лет. Это соответствует расстоянию от нас до них в 35-37 млрд световых лет, и расстоянию от самой дальней галактики до края наблюдаемой Вселенной в 9-11 млрд световых лет на сегодня. Это чрезвычайно далеко, и говорит об одном удивительном факте: Вселенная чрезвычайно быстро расширялась на ранних этапах, а сегодня расширяется гораздо медленнее. 1% возраста Вселенной отвечает за 20% её общего расширения!


История Вселенной полна фантастических событий, но с тех пор, как закончилась инфляция и произошёл Большой взрыв, скорость расширения стремительно падала, и замедляется, пока плотность продолжает уменьшаться.

Расширение Вселенной растягивает длину волны света (и отвечает за видимое нами красное смещение), и за большое расстояние между микроволновым фоном и самой далёкой галактикой отвечает большая скорость этого расширения. Но размер Вселенной сегодня свидетельствует ещё кое о чём удивительном: об невероятных эффектах, происходивших с течением времени. Со временем Вселенная продолжит расширяться всё больше и больше, и к тому времени, когда её возраст будет в десять раз превышать сегодняшний, расстояния увеличатся так сильно, что нам уже не будут видны никакие галактики за исключением членов нашей местной группы, даже с телескопом, эквивалентным Хабблу. Наслаждайтесь всем тем, что видно сегодня, великим разнообразием того, что присутствует на всех космических масштабах. Оно не будет существовать вечно!

Орбитальный телескоп имени Хаббла, запущенный в 1990 году, стал главным инструментом землян, раздвинувшим видимые границы Вселенной. Заголовки «астрономы нашли самую далекую галактику» стали привычными для СМИ и научных публикаций, ведь находить самый удаленный объект действительно можно хоть каждый день. Может показаться, что качественного прорыва подобные открытия не несут: чем мощнее мы берем бинокль за городом, тем дальше мы видим.

Однако эта аналогия здесь не вполне уместна. Взяв более мощный бинокль, мы продолжаем видеть по сути одни и те же объекты - поля, реки, леса, постройки. Все это растет, движется, стоит и не падает по давно известным нам законам.

Видимый же сегодня «край» содержит объекты, испустившие свет спустя всего сотни миллионов лет после Большого взрыва. В ту эпоху Вселенная только начинала обретать очертания. Поэтому открывая самые далекие галактики мы стараемся понять не «а что там дальше?», а «с чего все начиналось?».

Красное смещение

Вселенская линейка Красным смещением называется отношение величины сдвига спектральной линии в длинноволновую сторону, к длине волны в лабораторной системе отсчета.

Для объектов, излучивших свет на заре рождения Вселенной, этот сдвиг в разы превышает саму длину волны

Вселенная постоянно расширяется, причем, чем дальше наблюдаемый на больших масштабах объект, тем быстрее он от нас удаляется. Поэтому самым удобным мерилом расстояния считается оценка покраснения объекта, вызванного эффектом Допплера. Самая далекая до последнего времени галактика соответствовала красному смещению z=8,6. Она родилась спустя 600 млн лет после Большого взрыва.

Период от 150 до 800 млн лет после Большого взрыва относится к так называемому периоду реионизации, когда первые звезды и галактики ионизовали межгалактический газ.

В статье, опубликованной в журнале Nature, астрономы под руководством Ричарда Боуэнса из Лейденского университета сообщают об открытии еще более далекой галактики с красным смещением порядка 10. Галактику UDFj-39546284 заметили в 2009 году, спустя всего три месяца после того, как на телескопе Hubble была установлена широкоугольная камера UDFj-39546284. Тусклое пятнышко, видимое на глубоком обзоре неба - не что иное как компактная галактика, состоящая из молодых голубых звезд. Свет, который мы видим от нее, испущен спустя всего 480 млн лет после Большого взрыва.

«Эти наблюдения дают нам наилучший взгляд на самые ранние объекты, которые удавалось найти», — пояснил Ричард Боуэнс.

Ясли Вселенной

Галактика, свет которой долетел до нас, слишком мала и юна, чтобы иметь спиральную форму или другие особенности. Ученые установили, что галактику населяли звезды возрастом 100−200 млн лет. Они образовались из газа, собранного вокруг сгустков загадочной темной материи.

По словам исследователей, в наблюдаемую эпоху юная Вселенная переживала своеобразный бэби-бум: в период с 480 до 650 млн лет после Большого взрыва число звезд увеличилось на один порядок. «Бешеный темп, с которым рождались звезды, говорит нам, что если заглянуть чуть подальше, мы увидим куда более драматичные изменения, происходившие при образовании самых первых галактик», — пояснил Гарт Иллингуорт из Калифорнийского университета в Санта-Крузе.

За краем края

Миновав рубеж в z=10 астрономы приблизились к «краю края». Первые 500 млн лет (при z от 1000 до 10) после Большого взрыва остаются белым пятном в принятой сегодня иерархической модели образования галактик - от звездных скоплений к эллиптическим и спиральным галактикам. Галактика UDFj-39546284 обнаружена в самом дальнем инфракрасном диапазоне, который могут наблюдать приборы телескопа Hubble. Заглянуть дальше, в самые первые годы существования Вселенной, ученые надеются при помощи телескопа имени Джеймса Вебба.

Image caption Эта звезда погибла спустя всего 520 млн лет после Большого Взрыва

Гигантский взрыв сверхновой звезды на самом краю наблюдаемой Вселенной стал, судя по всему, самым удаленным событием, зафиксированным телескопом.

Астрономы считают, что гибель этой звезды, заснятая американской орбитальной обсерваторией SWIFT, произошла всего через 520 млн лет после Большого Взрыва, в котором родилась наша Вселенная.

Это означает, что световое излучение гибнущей звезды шло до Земли 13,14 миллиардов лет.

Результаты этого исследования публикуются в научном журнале Astrophysical Journal.

Обнаруженное явление получило обозначение GRB 090429B. Буквы GRB являются сокращением слов gamma-ray burst - всплеска гамма-излучения - так астрономы обозначают подобные объекты.

Рентгеновский снимок Вселенной

Эти вспышки гамма-излучения обычно сопровождают чрезвычайно бурные звездные процессы, например, окончание срока жизни гигантских звезд.

"Вероятно, это была огромная звезда, с массой раз в 30 больше нашего Солнца", - говорит руководитель группы исследователей доктор Антонино Куккиара из университета Калифорнии в Беркли.

Image caption Спутник Swift является совместным проектом НАСА и ЕКА

"Пока у нас нет достаточных данных, чтобы отнести эту звезду к так называемым звездам типа Популяция III, то есть к самому первому поколению звезд, появившихся в нашей Вселенной, - считает ученый, - но мы наверняка наблюдаем один из самых ранних этапов формирования звезд".

Эти вспышки происходят в течение очень короткого времени, но их послесвечение длится иногда в течение нескольких суток, что позволяет наблюдать за развитием процесса с помощью других телескопов и определять расстояние до гамма-всплеска.

Запущенный в 2004 году спутник Swift имеет возможность быстрого, менее минуты, оптического и рентгеновского отождествления всплесков. Среди его открытий - мощные, иногда многократные рентгеновские всплески в послесвечениях, а также обнаружение послесвечений еще до окончания собственно гамма-излучения.

Гонка за древностью

Астрономы соревнуются сейчас в том, кто зафиксирует самый дальний, а значит, и самый древний объект во Вселенной.

Известный космический телескоп "Хаббл" имеет гораздо более мощные инструменты для наблюдения за такими отдаленными объектами, которые были доставлены на его борт американскими астронавтами в 2009 году.

Как возникает гамма-всплеск (ГВ)

Ученые НАСА, которые изучают снимки, сделанные телескопом "Хаббл", уже наблюдали галактики, которые находятся примерно на таком же расстоянии от нас, что и гамма-объект GRB 090429B.

Астрономы интересуются этими крайне отдаленными звездами и звездными скоплениями, поскольку они расширяют наше понимание механизмов эволюции Вселенной.

Особое внимание привлекают звезды первого поколения. Эти яркие голубые переменные возникли из молекулярных облаков, которые образовались на ранних этапах вскоре после Большого Взрыва.

Эти огромные пульсирующие звезды имели очень краткий и бурный цикл развития - всего несколько миллионов лет, порождая при своей гибели тяжелые элементы.

Их жесткое ультрафиолетовое излучение приводило к реионизации окружающих их туманностей, состоящих в основном из водорода, срывая электроны с атомов, что в свою очередь порождало ту крайне разреженную межгалактическую плазму, которая окружает нынешнее поколение звезд в нашей Галактике.

Как говорит доктор Куккиара, гамма-всплеск GRB 090429B вряд ли является одной из самых первых звезд Вселенной. Вполне вероятно, что еще до этого существовал несколько поколений звезд, о которых мы пока ничего не знаем.

В создании орбитального телескопа Swift принимали участие британские и итальянские инженеры. На его борту работает британская рентгеновская камера, фиксирующая гамма-всплески, а также компоненты ультрафиолетового оптического телескопа.

Похожие публикации